ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Filling technical gaps and fueling the advancing nuclear supply chain at SRNL
Ensuring energy resilience for our nation is on the minds of leaders and citizens alike. Advances in nuclear power technologies are increasing needs within the nuclear industry supply chain. Savannah River National Laboratory’s decades of experience in nuclear materials processing makes the lab uniquely qualified to meet the current and future challenges of the nuclear fuel cycle.
Valil S. Sathyaseelan, Appadurai L. Rufus, Sankaralingam Velmurugan
Nuclear Technology | Volume 193 | Number 2 | February 2016 | Pages 306-317
Technical Paper | doi.org/10.13182/NT15-27
Articles are hosted by Taylor and Francis Online.
At elevated temperatures, the corrosion of carbon steel and Type 304 stainless steel is high in media containing polycarboxylic acids such as nitrilotriacetic acid, which is a reagent used for the decontamination of nuclear reactor coolant systems. Hence, three commercial corrosion inhibitors (Philmplus 5K655, Prosel PC-2116, and Ferroquest LP7203) were evaluated for high-temperature applications. Preliminary screening of the inhibitors was done by electrochemical techniques, namely, polarization and impedance spectroscopy. Philmplus showed maximum corrosion inhibition efficiency and hence was used for high-temperature investigations. A concentration of 500 mg/L was found to be optimum. The high-temperature dissolution of corrosion product oxides such as magnetite and nickel ferrite that are relevant to nuclear reactors was also carried out in the presence of Philmplus. During the decontamination process, which involves the dissolution of corrosion product oxides, it is desirable to use an inhibitor that will alleviate the corrosion of the underlying base metal without compromising on the dissolution of the oxides present over it. Investigations were also carried out to evaluate hydrazine as a corrosion inhibitor for high-temperature applications; the results obtained were comparable to those of Philmplus.