ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Valil S. Sathyaseelan, Appadurai L. Rufus, Sankaralingam Velmurugan
Nuclear Technology | Volume 193 | Number 2 | February 2016 | Pages 306-317
Technical Paper | doi.org/10.13182/NT15-27
Articles are hosted by Taylor and Francis Online.
At elevated temperatures, the corrosion of carbon steel and Type 304 stainless steel is high in media containing polycarboxylic acids such as nitrilotriacetic acid, which is a reagent used for the decontamination of nuclear reactor coolant systems. Hence, three commercial corrosion inhibitors (Philmplus 5K655, Prosel PC-2116, and Ferroquest LP7203) were evaluated for high-temperature applications. Preliminary screening of the inhibitors was done by electrochemical techniques, namely, polarization and impedance spectroscopy. Philmplus showed maximum corrosion inhibition efficiency and hence was used for high-temperature investigations. A concentration of 500 mg/L was found to be optimum. The high-temperature dissolution of corrosion product oxides such as magnetite and nickel ferrite that are relevant to nuclear reactors was also carried out in the presence of Philmplus. During the decontamination process, which involves the dissolution of corrosion product oxides, it is desirable to use an inhibitor that will alleviate the corrosion of the underlying base metal without compromising on the dissolution of the oxides present over it. Investigations were also carried out to evaluate hydrazine as a corrosion inhibitor for high-temperature applications; the results obtained were comparable to those of Philmplus.