ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Kwang-Wook Kim, Keun-Young Lee, Eil-Hee Lee, Yeji Baek, Dong-Yong Chung, Jei-Kwon Moon
Nuclear Technology | Volume 193 | Number 2 | February 2016 | Pages 318-329
Technical Paper | doi.org/10.13182/NT15-23
Articles are hosted by Taylor and Francis Online.
This work studied a concept of prompt countermeasure to minimize the accumulation of radioactive wastewater generated in severe nuclear accidents like the Fukushima Daiichi accident. A sequential precipitation process for the removal of Cs, Sr, I, and residual nuclides of Co, Mn, Sb, and Ru was suggested as a way to embody this concept. The process was confirmed to be possible as an effective and rapid emergency treatment for radioactive wastewater using many experiments with non-radioactive and active nuclides. Cobalt ferrocyanide–impregnated chabazite zeolite, Ba-impregnated 4A zeolite, and Ag-impregnated 13X zeolite were chosen as adsorbents for Cs, Sr, and I in this work had very high selectivities and fast adsorption rates with decontamination factors (DFs) on the order of 102 to 103. The adsorbent powders were rapidly settled in solution within 5 to 10 min by adding a coagulant of ferric ions. The residual nuclides could be removed by coprecipitation using ferric ion and flocculation using anionic polyacrylamide with DFs of more than 100 within 10 min.