ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Mária Chromčíková, Jana Vokelová, Jaroslava Michálková, Marek Liška, Jan Macháček, Ondrej Gedeon, Vojtech Soltész
Nuclear Technology | Volume 193 | Number 2 | February 2016 | Pages 297-305
Technical Paper | doi.org/10.13182/NT15-22
Articles are hosted by Taylor and Francis Online.
The chemical durability of gamma-irradiated glass fibrous insulation commonly used in the reactor containment of nuclear power plants was tested by static leaching tests at 90°C. Distilled water and borate coolant solution were used as corrosive media. Two radiation doses, 2 and 4 MGy, were applied, the higher one roughly corresponding to 30 years of irradiation in reactor containment. The glass insulation was irradiated at low (70°C) and increased (450°C) temperatures. The results of the static leaching tests were compared with those obtained for nonirradiated native glass fibers. In distilled water, higher normalized leached amounts of calcium were found for low-temperature-irradiated glass fibers and in the initial stage of leaching of high-temperature-irradiated glass fibers; the lower normalized leached amounts were found for boron for glasses irradiated at both temperatures. In the borate coolant solution, higher normalized leached amounts of calcium and lower leached amounts of aluminum were observed for glasses irradiated at both temperatures. In all cases, the results were comparable for both applied radiation doses. Moreover, extraordinary brittleness of the glass fibers irradiated at high temperature was observed. This principally new finding needs further experimental and theoretical investigation.