ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Seung Min Lee, Travis W. Knight, Stewart L. Voit, Rozaliya I. Barabash
Nuclear Technology | Volume 193 | Number 2 | February 2016 | Pages 287-296
Technical Paper | doi.org/10.13182/NT14-136
Articles are hosted by Taylor and Francis Online.
The solid solution of (U1−yFPy)O2±x has the same fluorite structure as UO2±x, and the lattice parameter is affected by dissolved fission product and oxygen concentrations. The relation between the lattice parameter and the concentrations of neodymium and oxygen in the fluorite structure of (U1−yNdy)O2±x was investigated using X-ray diffraction. The lattice parameter behavior in the (U1−yNdy)O2±x solid solution shows a linear change as a function of the oxygen-to-metal ratio and solubility of neodymium. The lattice parameter depends on the radii of ions forming the fluorite structure and also can be expressed by a particular rule (modified Vegard’s law). The numerical analyses of the lattice parameters for the stoichiometric and nonstoichiometric solid solutions were conducted, and the lattice parameter model for the (U1−yNdy)O2±x solid solution was assessed. A very linear relationship between the lattice parameter and the Nd and O concentration for the stoichiometry and nonstoichiometry of the (U1−yNdy)O2±x solid solution was verified.