ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Seung Min Lee, Travis W. Knight, Stewart L. Voit, Rozaliya I. Barabash
Nuclear Technology | Volume 193 | Number 2 | February 2016 | Pages 287-296
Technical Paper | doi.org/10.13182/NT14-136
Articles are hosted by Taylor and Francis Online.
The solid solution of (U1−yFPy)O2±x has the same fluorite structure as UO2±x, and the lattice parameter is affected by dissolved fission product and oxygen concentrations. The relation between the lattice parameter and the concentrations of neodymium and oxygen in the fluorite structure of (U1−yNdy)O2±x was investigated using X-ray diffraction. The lattice parameter behavior in the (U1−yNdy)O2±x solid solution shows a linear change as a function of the oxygen-to-metal ratio and solubility of neodymium. The lattice parameter depends on the radii of ions forming the fluorite structure and also can be expressed by a particular rule (modified Vegard’s law). The numerical analyses of the lattice parameters for the stoichiometric and nonstoichiometric solid solutions were conducted, and the lattice parameter model for the (U1−yNdy)O2±x solid solution was assessed. A very linear relationship between the lattice parameter and the Nd and O concentration for the stoichiometry and nonstoichiometry of the (U1−yNdy)O2±x solid solution was verified.