ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
A. Petruzzi, M. Cherubini, M. Lanfredini, F. D’Auria, O. Mazzantini
Nuclear Technology | Volume 193 | Number 1 | January 2016 | Pages 113-160
Technical Paper | Special Issue on the RELAP5-3D Computer Code | doi.org/10.13182/NT14-145
Articles are hosted by Taylor and Francis Online.
Within the licensing process of the Atucha-II pressurized heavy water reactor, the best-estimate plus uncertainty (BEPU) approach has been selected for issuing Chapter 15 of the Final Safety Analysis Report. The RELAP5-3D code developed by Idaho National Laboratory has been adopted as the best-estimate system thermal-hydraulic code to perform the accident analyses. The complexity of a nuclear power plant (NPP) and of the accident scenarios may be a challenge for a conservative analysis and may justify the choice of a BEPU approach in the licensing process. This implies two main needs: (1) the need to adopt and to prove (to the regulatory authority) an adequate quality for the computational tools and (2) the need to account for the uncertainty. The purpose of the present paper is to outline key aspects of the BEPU process aimed at the licensing of the Atucha-II (CNA-II) NPP in Argentina operated by Nucleoeléctrica Argentina (NA-SA). Among the general attributes of a methodology to perform accident analysis of a NPP for licensing purposes, the very first one should be compliance with the established regulatory requirements. A second attribute deals with the adequacy and the completeness of the selected spectrum of events that should consider the combined contributions of deterministic and probabilistic methods. The third attribute is connected to the availability of qualified tools and analytical procedures suitable for the analysis of accident conditions envisaged for the NPP of concern. The execution of the overall analysis and the evaluation of results in relation to slightly fewer than 100 scenarios revealed the wide safety margins available for the NPP of concern, which was licensed on May 29, 2014.