ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
A. Petruzzi, M. Cherubini, F. D'Auria
Nuclear Technology | Volume 193 | Number 1 | January 2016 | Pages 47-87
Technical Paper | Special Issue on the RELAP5-3D Computer Code | doi.org/10.13182/NT14-144
Articles are hosted by Taylor and Francis Online.
The application of RELAP5 at GRNSPG & NINE (Nuclear Research Group of San Piero a Grado–Nuclear and Industrial Engineering) started more than 30 years ago during which several versions of the code have been applied for the analysis of a very large variety of scenarios occurring in facilities and nuclear installations. The present paper has two goals: (1) to summarize the results and main outcomes achieved through the application of RELAP5 to international projects and benchmarks in which GRNSPG & NINE was involved and (2) to qualify the system’s thermal-hydraulic code calculations through the systematic application of a set of developed procedures.
Among the analyses performed, this paper will provide insights into the code results and, whenever possible, into the comparison with the reference/experimental data of scenarios measured in (1) integral test facilities: PSB-VVER, ATLAS, PKL, LOBI, LOFT, SPES, PACTEL; (2) separate effect test facilities: BFBT, Neptun, PANDA; (3) research reactors: Experimental Breeder Reactor (EBR); and (4) nuclear power plants: Atucha-II [pressurized heavy water reactor (PHWR)-Konvoi], VVER-1000, Darlington (CANDU).
In relation to the methodology developed for qualifying a system thermal-hydraulic code calculation, this paper provides a short description and spot results of the systematic application to the cases mentioned above in respect to some of the following steps: (1) demonstration of the geometrical fidelity; (2) demonstration of the steady-state achievement; (3) qualification at the on-transient level, which implies the characterization of (a) phenomenological windows and (b) relevant thermal-hydraulic aspects; and (4) quantitative analysis to evaluate the accuracy of the code calculation using the fast Fourier transform based method.
Finally, the main outcomes of the analyses summarized in this paper are the characterization of the level of assessment of RELAP5 and the demonstration of existence of a robust procedure to qualify system thermal-hydraulic code calculations.