ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Nuclear materials testing project brings U.S. and U.K. expertise together
As nations look to nuclear energy as a source of reliable electricity and heat, researchers and industry are developing a new generation of nuclear reactors to fill the need. These advanced nuclear reactors will provide safe, efficient, and economical power that go beyond what the current large light water reactors can do.
But before large-scale deployment of advanced reactors, researchers need to understand and test the safety and performance of the technologies—especially the coolants and materials—that make them possible.
Now, the United States and the United Kingdom have teamed up to test hundreds of advanced nuclear materials.
D. Mandelli, C. Smith, T. Riley, J. Nielsen, A. Alfonsi, J. Cogliati, C. Rabiti, J. Schroeder
Nuclear Technology | Volume 193 | Number 1 | January 2016 | Pages 161-174
Technical Paper | Special Issue on the RELAP5-3D Computer Code | doi.org/10.13182/NT14-142
Articles are hosted by Taylor and Francis Online.
The existing fleet of nuclear power plants is in the process of having its lifetime extended and having the power generated from these plants increased via power uprates and improved operations. In order to evaluate the impact of these factors on the safety of the plant, the Risk-Informed Safety Margin Characterization (RISMC) pathway aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions and accident scenarios. This paper presents a case study in order to show the capabilities of the RISMC methodology to assess the impact of power uprate of a boiling water reactor system during a station blackout accident scenario. We employ a system simulator code, RELAP5-3D, coupled with RAVEN, which performs the stochastic analysis. Our analysis is performed by (a) sampling values from a set of parameters from the uncertainty space of interest, (b) simulating the system behavior for that specific set of parameter values, and (c) analyzing the outcomes from the set of simulation runs.