ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
G. Strydom, A. S. Epiney, A. Alfonsi, C. Rabiti
Nuclear Technology | Volume 193 | Number 1 | January 2016 | Pages 15-35
Technical Paper | Special Issue on the RELAP5-3D Computer Code | doi.org/10.13182/NT14-146
Articles are hosted by Taylor and Francis Online.
The Parallel and Highly Innovative Simulation for INL Code System (PHISICS) has been under development at Idaho National Laboratory since 2010. It consists of several modules providing improved coupled core simulation capability: INSTANT (Intelligent Nodal and Semi-structured Treatment for Advanced Neutron Transport) (three-dimensional nodal transport core calculations); MRTAU (Multi- Reactor Transmutation Analysis Utility) (depletion and decay heat generation); and modules performing criticality searches, fuel shuffling, and generalized perturbation. Coupling of the PHISICS code suite to the thermal-hydraulic system code RELAP5-3D was finalized in 2013, and as part of the verification and validation effort, the first phase of the Organisation for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA) MHTGR-350 benchmark has now been completed.
The theoretical basis and latest development status of the coupled PHISICS/RELAP5-3D tool are described in more detail in a concurrent paper. This paper provides an overview of the OECD/NEA MHTGR-350 benchmark and presents the results of exercises 2 and 3 defined for phase I. Exercise 2 required the modeling of a stand-alone thermal fluids solution at the end of equilibrium cycle for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The RELAP5-3D results of four subcases are discussed, consisting of various combinations of coolant bypass flows and material thermophysical properties. Exercise 3 required a coupled neutronics and thermal fluids solution, and the PHISICS/RELAP5-3D code suite was used to calculate the results of two subcases.
The main focus of this paper is a comparison of results obtained with the traditional RELAP5-3D “ring” model approach against a much more detailed model that includes kinetics feedback on individual “block” level and thermal feedbacks on a triangular submesh. The higher fidelity that can be obtained by this block model is illustrated with comparison results on the temperature, power density, and flux distributions. It is shown that the ring model leads to significantly lower fuel temperatures (up to 10%) when compared with the higher-fidelity block model and that the additional model development and run-time efforts are worth the gains obtained in the improved spatial temperature and flux distributions.