ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Fermi America looks to go public as NRC accepts COLA for AP1000s
Texas Tech University and Fermi America are now one step closer to realizing their massive vision for the Advanced Energy and Intelligence Campus in Amarillo, Texas, as the Nuclear Regulatory Commission has accepted the first two parts of its combined license application (COLA) for four Westinghouse AP1000s.
Rodolfo Vaghetto, Timothy Crook, Alessandro Vanni, Yassin A. Hassan
Nuclear Technology | Volume 193 | Number 1 | January 2016 | Pages 88-95
Technical Paper | Special Issue on the RELAP5-3D Computer Code | doi.org/10.13182/NT14-147
Articles are hosted by Taylor and Francis Online.
During a loss-of-coolant accident (LOCA), fibrous debris and other particles generated by the jet impingement may be transported to the sump, accumulate, or even penetrate through the strainers, reaching the reactor core. Pressure relief holes and other plant-specific features may provide alternative paths to the coolant under debris-generated core blockage scenarios and can play a major role in core coolability. A typical four-loop pressurized water reactor was modeled using RELAP5-3D to simulate the reactor system response during large-break LOCA scenarios under hypothetical full core blockage conditions. Pressure relief holes were included in the input model to study the effects of these alternative flow paths on the core coolability. The comparison of the simulation results obtained with two different models (with and without pressure relief holes) proved the effectiveness of these alternative flow paths in providing sufficient flow to the core to remove the decay heat during the long-term cooling phase, maintaining the cladding temperature sufficiently below the safety limits at any time after the core blockage occurred. The results presented in this paper not only confirmed the importance of including specific geometric features of the reactor system (generally neglected) when simulating core blockage scenarios but also provided evidence that even under certain extreme core blockage conditions, core coolability may still be guaranteed.