ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Gabriel Kooreman, Farzad Rahnema
Nuclear Technology | Volume 192 | Number 3 | December 2015 | Pages 264-277
Technical Paper | Radiation Transport and Protection | doi.org/10.13182/NT14-150
Articles are hosted by Taylor and Francis Online.
The hybrid Diffusion-Transport Homogenization (DTH) method has been improved by replacing the assembly-level fixed-source calculation step with a fixed number of whole-core transport sweeps following each homogenization step. Like the unmodified DTH method, the Enhanced hybrid Diffusion-Transport Homogenization (EDTH) method adds an “auxiliary cross-section” term to the right side of the transport equation in order to maintain consistency with the heterogeneous equation. As an improvement to the DTH method, the on-the-fly rehomogenization step of the EDTH method utilizes a fixed number of full-core transport sweeps in lieu of assembly-level fixed-source heterogeneous transport calculations. The EDTH method has been tested in one-dimensional reactor core benchmark problems typical of a boiling water reactor core, a gas-cooled thermal reactor [High Temperature Test Reactor (HTTR)] core, and a pressurized water reactor core with mixed-oxide fuel. The method has been shown to reproduce the heterogeneous transport flux profile with 0 to 46 pcm eigenvalue error and 0.1% to 1.8% mean relative flux error with a speedup factor of 1.4 to 4.5 times faster than the DTH method. This represents a speedup of 3.0 to 12.5 times compared to fine-mesh transport.