ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Gabriel Kooreman, Farzad Rahnema
Nuclear Technology | Volume 192 | Number 3 | December 2015 | Pages 264-277
Technical Paper | Radiation Transport and Protection | doi.org/10.13182/NT14-150
Articles are hosted by Taylor and Francis Online.
The hybrid Diffusion-Transport Homogenization (DTH) method has been improved by replacing the assembly-level fixed-source calculation step with a fixed number of whole-core transport sweeps following each homogenization step. Like the unmodified DTH method, the Enhanced hybrid Diffusion-Transport Homogenization (EDTH) method adds an “auxiliary cross-section” term to the right side of the transport equation in order to maintain consistency with the heterogeneous equation. As an improvement to the DTH method, the on-the-fly rehomogenization step of the EDTH method utilizes a fixed number of full-core transport sweeps in lieu of assembly-level fixed-source heterogeneous transport calculations. The EDTH method has been tested in one-dimensional reactor core benchmark problems typical of a boiling water reactor core, a gas-cooled thermal reactor [High Temperature Test Reactor (HTTR)] core, and a pressurized water reactor core with mixed-oxide fuel. The method has been shown to reproduce the heterogeneous transport flux profile with 0 to 46 pcm eigenvalue error and 0.1% to 1.8% mean relative flux error with a speedup factor of 1.4 to 4.5 times faster than the DTH method. This represents a speedup of 3.0 to 12.5 times compared to fine-mesh transport.