ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Applications open for the fall cohort of Mentor Match
Applications are officially open for the second cohort of the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the fall cohort, which will take place October 1–November 30, is September 17. The application form can be found here.
Ramamoorthy Karthikeyan, Alain Hébert
Nuclear Technology | Volume 157 | Number 3 | March 2007 | Pages 299-316
Technical Note | Fission Reactors | doi.org/10.13182/NT07-A3819
Articles are hosted by Taylor and Francis Online.
The effect of advanced resonance self-shielding models incorporated in the developmental version of the DRAGON code on estimation of reactivity coefficients of a typical CANDU-6 lattice is evaluated. The advanced self-shielding models are based on either equivalence in the dilution model or on a subgroup approach. Under equivalence in dilution models, the generalized Stamm'ler model was used with or without Riemann integration and Nordheim model. Among the subgroup approaches, the Ribon extended and the statistical self-shielding models were used. The Ribon extended self-shielding model uses mathematical probability tables, while the statistical self-shielding model uses physical probability tables. The analysis focused on four important transients, which include the fuel temperature coefficient, coolant void reactivity, pressure tube ingression, and calandria tube ingression. Four burnup stages for estimation of reactivity have been identified. To benchmark the results obtained using DRAGON, the results obtained were compared with those of MCNP5. These analyses indicated that, of all the self-shielding models, the resonance self-shielding model based on the subgroup approach using physical probability tables seems to perform well for all situations and can be recommended for CANDU-6 analyses using the code DRAGON.