ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Kamil Tucek, Mikael Jolkkonen, Janne Wallenius, Waclaw Gudowski
Nuclear Technology | Volume 157 | Number 3 | March 2007 | Pages 277-298
Technical Paper | Accelerators | doi.org/10.13182/NT07-A3818
Articles are hosted by Taylor and Francis Online.
Neutronic and burnup characteristics of an accelerator-driven transuranium burner in a startup mode were studied. Different inert and absorbing matrices as well as lattice configurations were assessed in order to identify suitable fuel and core design configurations. Monte Carlo transport and burnup codes were used in the analyses. The lattice pin pitch was varied to optimize the source efficiency and coolant void worth while respecting key thermal and material-related design constraints posed by fuel and cladding. A HfN matrix appeared to provide a good combination of neutronic, burnup, and safety characteristics: maintaining a hard neutron spectrum, yielding acceptable coolant void reactivity and source efficiency, and alleviating the burnup reactivity swing. A conceptual design of a (TRU,Hf)N fueled, lead-bismuth eutectic-cooled accelerator-driven system was developed. Twice higher neutron fission-to-absorption probabilities in Am isotopes were achieved compared to reactor designs relying on ZrN or YN inert matrix fuel. The production of higher actinides in the fuel cycle is hence limited, with a Cm fraction in the equilibrium fuel being ~40% lower than for cores with ZrN matrix-based fuel. The burnup reactivity swing and associated power peaking in the core are managed by an appropriate choice of cycle length (100 days) and by core enrichment zoning. A safety analysis shows that the system is protected from instant damage during unprotected beam overpower transient.