ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Mong J. Yu, Chan S. Kim, Kune Y. Suh
Nuclear Technology | Volume 157 | Number 3 | March 2007 | Pages 261-276
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT07-A3817
Articles are hosted by Taylor and Francis Online.
Quenching experiments were performed to examine the effect of inclination angles and curvature on film-boiling heat transfer. The experiments employed a 294-mm-diam, 30-mm-thick stainless steel downward-facing hemisphere to substantiate the local film-boiling mechanism along the angular surface. Forty-six thermocouples were installed from 0 deg (the bottom) to 85 deg (near the equator) at three intervals: 10 deg (0 to 10 deg), 5 deg (10 to 55 deg), and 2.5 deg (55 to 85 deg) near the outer (1.5 mm) and inner (5 mm) surfaces of the test section. The angular film-boiling heat fluxes and heat transfer coefficients were obtained from the two-dimensional transient temperature profiles by solving a transient heat conduction equation in spherical coordinates. The test results were compared with those of the laminar and interfacial wavy film-boiling analysis. Undulating heat transfer coefficients were observed from the experimental data as the angle increases. These phenomena intensified near the equator, which has higher inclination angles than near the bottom. It was shown that the Helmholtz instability limited the vapor film thickness. In addition, the boiling mechanism on the downward-facing hemisphere was visualized utilizing a digital camera.