ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
J. Papin, B. Cazalis, J. M. Frizonnet, J. Desquines, F. Lemoine, V. Georgenthum, F. Lamare, M. Petit
Nuclear Technology | Volume 157 | Number 3 | March 2007 | Pages 230-250
Technical Paper | Reactivity-Initiated Accident (RIA) | doi.org/10.13182/NT07-A3815
Articles are hosted by Taylor and Francis Online.
The CABRI REP-Na program was performed in the sodium loop of the CABRI reactor by the French Institut de Radioprotection et de Sûreté Nucléaire. The objective was to study the behavior of high-burnup UO2 and mixed-oxide (MOX) fuel during a reactivity-initiated accident (RIA) and involved eight tests with UO2 and four with MOX fuel. Failures of some UO2 and MOX fuel rods at enthalpy levels ranging from 125 to 472 J/g (30 to 113 cal/g) demonstrated the need for further development of the present safety criteria pertaining to fuel behavior. Detailed interpretation of the test data led to identifying the deleterious influence of a high clad corrosion level with hydride concentrations on clad failure, the contribution of grain boundary gases on fission gas release, and potential clad loading, mainly in MOX fuel during the first phase of the transient without significant clad temperature increase.Questions still remain concerning the transient fission gas behavior and its impact on clad loading during the entire transient, the rod behavior with high clad temperature and internal pressure, and the postfailure phenomena (fuel ejection, fuel/coolant interaction with finely fragmented solid fuel). These issues will be addressed by the CABRI International Program tests under typical pressurized water reactor conditions.