ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Ashok K. Ghosh, Kerry J. Howe, Arup K. Maji, Bruce C. Letellier, Russell C. Jones
Nuclear Technology | Volume 157 | Number 2 | February 2007 | Pages 196-207
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT07-A3812
Articles are hosted by Taylor and Francis Online.
This paper examines the generation and effect of secondary materials created by chemical reactions between dislodged fiberglass insulation debris and simulated cooling system water that would be present within the containment of a pressurized water reactor following a loss-of-coolant accident (LOCA). Corrosion and subsequent precipitation of metals (aluminum, iron, zinc, and calcium) pose an important safety concern because the surface area of exposed metal inside containment represents a large potential source term of chemical debris products that may be capable of blocking the recirculation sump. The Advisory Committee on Reactor Safeguards (ACRS) cited the presence of gelatinous material recovered from the Three Mile Island containment pool after its 1979 accident and noted that the formation of adverse chemical products had not been previously examined under Generic Safety Issue 191 (GSI-191) research program.Based on small-scale tests, the following key issues related to corrosion and precipitation were investigated:1. Do credible corrosion mechanisms exist for leaching metal ions from bulk solid surfaces, and if so, what are the typical reaction rate constants?2. Can corrosion products accumulate in the containment pool water to the extent that they might precipitate as new chemical species at pH and temperature levels that are relevant to the LOCA accident sequence?3. How do chemical precipitants affect the head loss across an existing fibrous debris bed?Findings from these tests confirmed that corrosion of metal can occur and that artificially induced metallic precipitants can cause substantial additional head loss.