ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Yoshitaka Chikazawa, Yasushi Okano, Mamoru Konomura, Naoki Sawa, Yoshio Shimakawa, Toshihiko Tanaka
Nuclear Technology | Volume 157 | Number 2 | February 2007 | Pages 120-131
Technical Paper | Fission Reactors | doi.org/10.13182/NT07-A3807
Articles are hosted by Taylor and Francis Online.
A small reactor has the potential to be utilized as a power source to meet diverse social needs and reduce capital risks. In remote areas, populations tend to be small, and an economic power grid may not be available. In such situations, a small power source with a capacity of less than 50 MW(electric) without refueling is attractive since the costs for fuel transfer to such a site are expensive. In the present study, a metal fuel core with a lifetime of 30 yr and a simple reactor plant design has been proposed. The local burnup reactivity change in every core region is minimized by adjusting the zirconium content and the smear density of the three-core region to achieve a 550°C core outlet temperature. At the end of the cycle, the burnup reactivity is evaluated to be 1.1% of (dk/kk'), achieving a 30-yr core life. The reactor vessel is dramatically simplified by eliminating a fuel-handling system. The number of main cooling loops is reduced to one by installing dual electromagnetic pumps in the primary sodium circuit. The nuclear steam supply system mass, at 309 tonnes, shows that the present loop-type concept can more dramatically reduce material mass than that of the previous pool-type concept of 484 tonnes. The rough estimation of the electricity cost shows that this concept will be competitive for remote sites. Transient analyses show that a self-actuated shutdown system enhances the passive safety features, thus ensuring reactor integrity in anticipated transient without scram events.