ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Charles A. Riggs, Robert V. Tompson, Tushar K. Ghosh, Sudarshan K. Loyalka, Dabir S. Viswanath
Nuclear Technology | Volume 157 | Number 1 | January 2007 | Pages 74-86
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT07-A3803
Articles are hosted by Taylor and Francis Online.
Adsorption isotherms for water vapor on powdered cesium iodide are reported. Both macroscopic and microscopic (single-particle) samples of CsI powder from the same source were studied by two different techniques. The adsorption isotherms for the macroscopic samples were obtained using a Cahn 2000 Electrobalance, which leaves the sample uncharged during the measurement and utilizes a conventional microbalance to measure the relevant mass changes. The adsorption isotherms for the microscopic samples were obtained using a custom-made two-ring electrodynamic balance to measure the mass changes due to adsorption that occurred for single suspended charged particles of the CsI powder. Here, the relevant mass changes were determined from the changes observed in the required particle suspension voltages in the balance. The total charge on each particle studied was determined using the electron stepping technique. Based on the classification scheme of Brunauer, Emmett, and Teller, it is concluded that type III adsorption isotherms were observed for both the macroscopic and the single-particle CsI samples, which would indicate a multilayer adsorption process. The isotherms for the macroscopic and the single-particle CsI samples, while exhibiting the same basic shape, were found to vary greatly in magnitude. It is believed that this variation in magnitude is primarily due to the charge on the microscopic samples interacting attractively with the highly polarized water molecules and thus significantly increasing the multilayer adsorption of water. Some possible chemisorption was also indicated for both the charged and uncharged CsI, as evidenced by an inability to completely regenerate either the macroscopic or the microscopic samples.