ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Sean M. McDeavitt, Yunlin Xu, Thomas J. Downar, Alvin A. Solomon
Nuclear Technology | Volume 157 | Number 1 | January 2007 | Pages 37-52
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT07-A3800
Articles are hosted by Taylor and Francis Online.
The thorium oxide fuel cycle has been a viable technology option since the beginning of the nuclear era. By placing (Th,U)O2 in a zirconium matrix, the resulting cermet nuclear fuel properties create a strong negative void reactivity coefficient, which is especially appealing for boiling water reactor applications. The combination of the thorium fuel cycle and zirconium matrix cermets has enabled a new core design for a simplified boiling water reactor (SBWR). Core design simulations show that an 8-yr fuel cycle is achievable using this fuel concept. Further, if burnable poisons are added to the powder fabrication mix, an essentially flat reactivity swing is created that could enable an autonomous control system. In addition to the SBWR core design, a preliminary investigation is presented for experimental fuel fabrication methods designed to simplify cermet fabrication. Spray drying and sintering were used to create mixed-oxide (Th,U)O2 powders with a nominal diameter of ~200 m, with ~10 vol% uniformly distributed porosity and nominal grain size of 5 m. In addition, a low-temperature cermet fabrication method was used to fabricate simulated fuel pins with a porous zirconium matrix. Results from these initial development experiments are promising for the future application of the cermet fuel, but further work is required to demonstrate their viability.