ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
Sean M. McDeavitt, Yunlin Xu, Thomas J. Downar, Alvin A. Solomon
Nuclear Technology | Volume 157 | Number 1 | January 2007 | Pages 37-52
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT07-A3800
Articles are hosted by Taylor and Francis Online.
The thorium oxide fuel cycle has been a viable technology option since the beginning of the nuclear era. By placing (Th,U)O2 in a zirconium matrix, the resulting cermet nuclear fuel properties create a strong negative void reactivity coefficient, which is especially appealing for boiling water reactor applications. The combination of the thorium fuel cycle and zirconium matrix cermets has enabled a new core design for a simplified boiling water reactor (SBWR). Core design simulations show that an 8-yr fuel cycle is achievable using this fuel concept. Further, if burnable poisons are added to the powder fabrication mix, an essentially flat reactivity swing is created that could enable an autonomous control system. In addition to the SBWR core design, a preliminary investigation is presented for experimental fuel fabrication methods designed to simplify cermet fabrication. Spray drying and sintering were used to create mixed-oxide (Th,U)O2 powders with a nominal diameter of ~200 m, with ~10 vol% uniformly distributed porosity and nominal grain size of 5 m. In addition, a low-temperature cermet fabrication method was used to fabricate simulated fuel pins with a porous zirconium matrix. Results from these initial development experiments are promising for the future application of the cermet fuel, but further work is required to demonstrate their viability.