ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Wright officially sworn in for third term at the NRC
The Nuclear Regulatory Commission recently announced that David Wright, after being nominated by President Trump and confirmed by the Senate, was ceremonially sworn in as NRC chair on September 8.
This swearing in comes more than a month after Wright began his third term on the commission; he began leading as chair July 31. His term will conclude on June 30, 2030.
K. Mikityuk, P. Coddington, S. Pelloni, E. Bubelis, R. Chawla
Nuclear Technology | Volume 157 | Number 1 | January 2007 | Pages 18-36
Technical Paper | Reactor Safety | doi.org/10.13182/NT07-A3799
Articles are hosted by Taylor and Francis Online.
A consistent analytical comparison has been made of the transient behavior of critical and subcritical fast-spectrum reactor systems, the basic core design assumed in each case being that of the 80-MW(thermal) mixed-oxide-fueled, Pb-Bi-cooled, Experimental Accelerator Driven System (XADS). The transient calculations were performed using the FAST code system developed at the Paul Scherrer Institute. The present study demonstrates a high level of self-protection of both the critical and subcritical systems over a wide range of postulated events, including transient overpower due to reactivity insertion, loss of flow, station blackout, loss of coolant, and core overcooling accidents. The relative advantages and shortcomings of the two system types, from the viewpoint of transient behavior, are discussed on the basis of the corresponding simulation results obtained.