ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Hangbok Choi, Ho Jin Ryu, Gyuhong Roh, Chang Joon Jeong, Chang Je Park, Kee Chan Song, Jung Won Lee, Myung Seung Yang
Nuclear Technology | Volume 157 | Number 1 | January 2007 | Pages 1-17
Technical Paper | Fission Reactors | doi.org/10.13182/NT07-A3798
Articles are hosted by Taylor and Francis Online.
This study describes the mechanical compatibility of the direct use of spent pressurized water reactor fuel in Canada deuterium uranium (CANDU) reactors (DUPIC) fuel when it is loaded into a CANDU reactor. The mechanical compatibility can be assessed for the fuel management, primary heat transport system, fuel channel, and fuel handling system in the reactor core by both experimental and analytic methods. Because the physical dimensions of the DUPIC fuel bundle adopt the CANDU flexible (CANFLEX) fuel bundle design, which has already been demonstrated for a commercial use in CANDU reactors, the experimental compatibility analyses focused on the generation of material property data and the irradiation tests of the DUPIC fuel, which are used for the computational analysis. The intermediate results of the mechanical compatibility analysis have shown that the integrity of the DUPIC fuel is mostly maintained under the high-power and high-burnup conditions even though some material properties, such as the thermal conductivity, are a little lower compared to the uranium fuel. However, it is required that the current DUPIC fuel design be changed slightly to accommodate the high internal pressure of the fuel element. It is also strongly recommended that more irradiation tests of the DUPIC fuel be performed to accumulate a database for the demonstration of the DUPIC fuel performance in the CANDU reactor.