ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Jae Jun Jeong, Dae Hyun Hwang, Bub Dong Chung
Nuclear Technology | Volume 156 | Number 3 | December 2006 | Pages 360-368
Technical Note | Thermal Hydraulics | doi.org/10.13182/NT06-A3797
Articles are hosted by Taylor and Francis Online.
MARS is a best-estimate system analysis code that is based on the RELAP5/MOD3 and COBRA-TF codes. The COBRA-TF code was adapted as a three-dimensional thermal-hydraulic module in MARS. It uses a two-fluid, three-field model for two-phase flows and has a subchannel flow mixing model. The subchannel flow mixing model of the MARS three-dimensional module was assessed by using the ISPRA 16-rod bundle test and the GE 9-rod bundle test data. These tests represent typical pressurized water reactor and boiling water reactor core thermal-hydraulic conditions, respectively. Two interconnected subchannel tests that were performed under atmospheric pressure conditions were also used for the assessment. From the results of the assessments, a simple modification of the subchannel flow mixing model was suggested to take into account the effects of the system pressure on the void drift phenomena.