ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Te-Chuan Wang, Shih-Jen Wang, Jyh-Tong Teng
Nuclear Technology | Volume 156 | Number 3 | December 2006 | Pages 347-359
Technical Note | Thermal Hydraulics | doi.org/10.13182/NT06-A3796
Articles are hosted by Taylor and Francis Online.
Chinshan is a Mark-I boiling water reactor nuclear power plant (NPP) located in north Taiwan. It incorporates several severe-accident-mitigating features, especially two raw-water tanks in the mountain. According to a probabilistic risk assessment (PRA) of Chinshan NPP, station blackout (SBO) sequences are the most dominant sequences in internal core damage frequency. No credit is taken for the raw-water system in the development of a Chinshan PRA. Therefore, two dominant sequences (T3UTERDGX and T3UTERDG) of the SBO in the Chinshan PRA are cited as reference cases to evaluate the capacity of the raw-water system in the PRA and severe accident. The T3UTERDGX sequence is initiated by loss of off-site power (T3) followed by failure of both diesel generators (DG), failure of gas turbine generators, and failure to recover alternating current (ac) power (ER). That results in loss of all on- and off-site ac power. The high-pressure injection systems fail (UT) initially and timely reactor depressurization fails (X). The T3UTERDG sequence is the same as the T3UTERDGX sequence, except for failure of timely reactor depressurization (X). The MAAP4 code is used as a tool to evaluate the effectiveness of the raw-water system. Based on MAAP4 analysis, the raw-water system cannot cool down the core in the T3UTERDG sequence after introducing severe-accident-management guidelines. The raw-water system cannot flood dry-well water level above minimum debris submerge level (MDSL) in the T3UTERDGX sequence after reactor pressure vessel (RPV) breach. Sensitivity studies show that raw-water injection before the vessel water level reaches level 2 (L-2) can keep core coolability in the T3UTERDG sequence. Three times the raw-water injection rate is the minimum flow rate to flood the dry-well water level above MDSL and cool down the corium on the dry-well floor in the T3UTERDGX sequence. A raw-water system can be used as a mitigating measure, especially in an SBO. The RPV should be depressurized as quickly as possible if a raw-water system is the only mitigation measure in the accident. It is worthwhile to increase the raw-water flow rate to cool down the debris in the dry well after RPV breach.