ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Applications open for the fall cohort of Mentor Match
Applications are officially open for the second cohort of the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the fall cohort, which will take place October 1–November 30, is September 17. The application form can be found here.
C. Mun, L. Cantrel, C. Madic
Nuclear Technology | Volume 156 | Number 3 | December 2006 | Pages 332-346
Technical Note | Reactor Safety | doi.org/10.13182/NT156-332
Articles are hosted by Taylor and Francis Online.
During a hypothetical severe accident in a pressurized water reactor (PWR), fission products (FPs) are released from the nuclear fuel and may reach the reactor containment building. Among the FPs, ruthenium is of particular interest due to its ability to form volatile oxide compounds in highly oxidizing conditions. In addition, ruthenium is a very hazardous compound because it is chemically toxic and also because of its radiotoxicity.The topic of ruthenium is examined in terms of nuclear safety issues. A review of the literature regarding ruthenium oxides properties, gaseous and aqueous chemistry is compiled. The study focuses on ruthenium tetroxide (RuO4), which is highly reactive and volatile and is the most likely gaseous chemical form under the conditions prevailing in the containment. The interactions between ruthenium oxides and containment surfaces, which could be most important in overall ruthenium behavior, are also discussed. Finally, an evaluation of the possible revolatilization phenomena of ruthenium adsorbed on PWR containment surfaces or dissolved in the sump under superoxidizing conditions (radiolysis) is also presented. In this case, ruthenium dioxide (RuO2) must also be considered.Knowledge of all these phenomena is required to accurately predict ruthenium behavior and to make a best-estimate assessment of the potential ruthenium source term.