ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Beyond conventional boundaries: Innovative construction technologies pave the way for advanced reactor deployment
In a bid to tackle the primary obstacle in nuclear deployment—construction costs—those in industry and government are moving away from traditional methods and embracing innovative construction technologies.
J. L. Rempe, D. L. Knudson, K. G. Condie, S. Curtis Wilkins
Nuclear Technology | Volume 156 | Number 3 | December 2006 | Pages 320-331
Technical Paper | Radiation Measurements and Instrumentation | doi.org/10.13182/NT06-A3794
Articles are hosted by Taylor and Francis Online.
Traditional methods for measuring in-pile temperatures degrade above 1100°C. Hence, the Idaho National Laboratory (INL) initiated a project to explore the use of specialized thermocouples for high temperature in-pile applications. Efforts to develop, fabricate, and evaluate specialized high-temperature thermocouples for in-pile applications suggest that several material combinations are viable. Tests show that several low-neutron cross-section candidate materials resist material interactions and remain ductile at high temperatures. In addition, results indicate that the candidate thermoelements have a thermoelectric response that is single-valued and repeatable with acceptable resolution. The selection of the thermocouple materials depends on desired peak temperature and accuracy requirements. For applications at or above 1600°C, tests indicate that thermocouples having doped molybdenum and Nb-1%Zr thermoelement wires, HfO2 insulation, and a Nb-1%Zr sheath could be used.INL has worked to optimize this thermocouple's stability. With appropriate heat treatment and fabrication approaches, results indicate that thermal cycling effects on this thermocouple's calibration is minimized. INL initiated a series of high-temperature (1200 to 1800°C) long-duration (up to 6 months) tests to assess the long-term stability of these thermocouples. Initial results indicate that the INL-developed thermocouple's thermoelectric response is very stable. Typically, <20°C drift was observed in a 4000-h test at 1200°C. In comparison, commercially available types K and N thermocouples included in these 1200°C tests experienced drifts up to 110°C.