ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Yoon Sub Sim
Nuclear Technology | Volume 156 | Number 3 | December 2006 | Pages 289-302
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT06-A3792
Articles are hosted by Taylor and Francis Online.
In a thermal-hydraulic analysis for nuclear application, a one-dimensional analysis is widely used. In the analysis, averaging is required for the calculation of the cell property, and the accuracy of the averaging directly influences the accuracy of a numerical scheme. While the average value depends on the property distribution characteristics in a cell, conventional numerical schemes do not utilize the information. Instead, they rely on the use of a large number of nodes for their accuracy. There are many cases where the use of a large number of nodes is not practically allowed, especially in a transient system analysis, and the calculation results come to suffer from a large truncation error. To overcome the drawbacks of the conventional schemes, a new approach is introduced to reduce the truncation error by utilizing the distribution characteristics in a cell for the required averaging. The new approach places a node point at the boundary of a calculation cell and averaging is achieved from the properties at the inlet and outlet by using weighting factors that are determined from the cell property distribution. By this approach, it was successful to describe more accurately even a transient where the property distribution was stepwise. Steady-state calculation for a once-through steam generator where the feedwater is heated to superheated steam was accurately carried out with only three calculational nodes. The characteristics and achievements of the new approach are described.