ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
J. Ramon Ramirez, Gustavo Alonso, Robert T. Perry, Javier Ortiz-Villafuerte
Nuclear Technology | Volume 156 | Number 3 | December 2006 | Pages 247-255
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT06-A3788
Articles are hosted by Taylor and Francis Online.
Reprocessing benefits are still being debated from the standpoint of economy. However, it is a clear option to reduce the amount of depleted fuel assemblies and a reduction of the reactor plutonium inventories. Several mixed-oxide (MOX) fuel concepts have been considered as an option for mixed-fuel reload assemblies in boiling water reactors in the past. In this work, a new MOX fuel assembly design is proposed. The design is based on the use of a proportional fissile ratio between equivalent fissile plutonium (239Pu + 241Pu) and fissile uranium (235U). This is referred to as the PUF ratio. Furthermore, the moderation ratio will be increased in the assembly as a way to reduce the possible impact of using MOX fuel on the reactivity control systems. The design and performance of the MOX fuel assembly and the mixed core are presented and discussed. The new design, for the cases considered, can increase the MOX batch reload up to 52 MOX assemblies, in comparison with the 24 assemblies from a design that does not increase the moderation ratio. The use of the combined PUF ratio and increased moderation ratio for the MOX assembly allows for a reduction in the average enrichment of fissile plutonium to 4.68 wt%, instead of the 6.75 wt% necessary without increasing the moderation ratio. Both MOX designs produce the same amount of energy during the proposed cycle length and satisfy the same thermal limits. Some comparisons are performed between the core with this MOX fuel assembly and the core that uses only standard uranium assemblies.