ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
J. Ramon Ramirez, Gustavo Alonso, Robert T. Perry, Javier Ortiz-Villafuerte
Nuclear Technology | Volume 156 | Number 3 | December 2006 | Pages 247-255
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT06-A3788
Articles are hosted by Taylor and Francis Online.
Reprocessing benefits are still being debated from the standpoint of economy. However, it is a clear option to reduce the amount of depleted fuel assemblies and a reduction of the reactor plutonium inventories. Several mixed-oxide (MOX) fuel concepts have been considered as an option for mixed-fuel reload assemblies in boiling water reactors in the past. In this work, a new MOX fuel assembly design is proposed. The design is based on the use of a proportional fissile ratio between equivalent fissile plutonium (239Pu + 241Pu) and fissile uranium (235U). This is referred to as the PUF ratio. Furthermore, the moderation ratio will be increased in the assembly as a way to reduce the possible impact of using MOX fuel on the reactivity control systems. The design and performance of the MOX fuel assembly and the mixed core are presented and discussed. The new design, for the cases considered, can increase the MOX batch reload up to 52 MOX assemblies, in comparison with the 24 assemblies from a design that does not increase the moderation ratio. The use of the combined PUF ratio and increased moderation ratio for the MOX assembly allows for a reduction in the average enrichment of fissile plutonium to 4.68 wt%, instead of the 6.75 wt% necessary without increasing the moderation ratio. Both MOX designs produce the same amount of energy during the proposed cycle length and satisfy the same thermal limits. Some comparisons are performed between the core with this MOX fuel assembly and the core that uses only standard uranium assemblies.