ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Doo-Hyun Lim
Nuclear Technology | Volume 156 | Number 2 | November 2006 | Pages 222-245
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT06-A3787
Articles are hosted by Taylor and Francis Online.
Migration of nuclides in a water-saturated high-level radioactive waste repository is analyzed by a newly developed two-dimensional numerical model incorporating a multiple-canister configuration and a nonuniform horizontal flow field of the host rock. The nonuniform flow field is established numerically by obtaining space-dependent groundwater flow velocity vectors using the finite element method. Transport of nuclides is simulated for the instantaneous-pulse-input source condition using the random-walk method. The current study for advection-dominant host rock shows quantitatively that the migration of nuclides in a repository adopting the disposal-pit vertical-emplacement concept is influenced not only by the canister configuration but also by flow boundary conditions, where groundwater flow is considered to be horizontal to the repository plane. The effects of applied hydraulic gradient direction h on nuclide migration become more significant as the number of canisters increases, while the effects are negligible for the single-canister configuration. As the number of canisters increases, the results of nuclide migration with respect to h range more widely and are bounded by two extreme cases. The h orthogonal to the orientation of the disposal tunnel is observed as most advantageous in terms of the isolation of the radionuclide. The single-canister configuration yields conservative results compared with the multiple-canister configuration.