ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Serkan Yilmaz, Kostadin Ivanov, Samuel Levine, Moussa Mahgerefteh
Nuclear Technology | Volume 156 | Number 2 | November 2006 | Pages 168-179
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT06-A3783
Articles are hosted by Taylor and Francis Online.
An efficient and practical genetic algorithm (GA) was developed to optimize the UO2/Gd2O3 fuel pin burnable poison (BP) configurations for fresh fuel assembly (FA) designs loaded in a pressurized water reactor core. The objective of the optimization was to minimize the residual binding due to residual Gd isotopes in the fuel at the end of cycle (EOC). The GA process for creating new BP designs in a coded form called genotypes is generated randomly resulting in a large number of invalid designs. Each new BP design or genotype created by the new GA must be decoded into its corresponding phenotype so that it can be evaluated with a coupled fuel lattice and core depletion calculation. It is essential that most of the invalid designs be eliminated before performing the precise coupled fuel lattice calculation because of the long CPU time that it takes for this calculation. The elimination was accomplished in the new GA by incorporating a beginning-of-cycle (BOC) Kinf filter. The BOC Kinf filter eliminated most of the invalid new genotypes by assigning a high negative penalty to all genotypes that have a BOC Kinf greater than some limit (1.065) for the reference TMI-1 FA. This filter eliminates the need for performing coupled lattice and core depletion calculations for these genotypes. It accelerated the solution process and allowed evaluation of all new genotypes within one day. In this way, the GA minimized the residual binding using an objective function, which maximized the EOC soluble boron (SB) concentration. In essence, the EOC SB or its equivalent EOC keff was maximized.