ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Luciano Burgazzi
Nuclear Technology | Volume 156 | Number 2 | November 2006 | Pages 150-158
Technical Paper | Reactor Safety | doi.org/10.13182/NT06-A3781
Articles are hosted by Taylor and Francis Online.
The inclusion of passive safety-related systems within the advanced reactor design claims high system availability and reliability. A detailed system and safety analysis applying the failure mode and effect analysis (FMEA) approach is required as a primary step for the development of a methodology aimed at the reliability assessment of passive systems. The present study concerns thermal-hydraulic passive systems that are designed for decay heat removal and rely on natural circulation that foresee a heat exchanger immersed in a cooling pool. The main purposes of the work are to identify important accident initiators, find out the possible consequences to the plant deriving from component malfunctions, individuate possible causes, identify mitigating features and systems, and classify accident initiators in initiating events of accident sequences. A qualitative overview of accident sequences could be derived from the FMEA tables looking at consequences' description and preventive and corrective actions. Failure probabilistic evaluations are included as well to point out the probabilities and frequencies to have the plant in fault and/or unavailability conditions during passive system operation, therefore ensuring a complete set of initiating events of reactor accident sequences. Finally, important feedback to the design activities will derive from the FMEA study performed for safety assessment purposes. An important lesson elicited from the analysis is that measures against common-cause failures can reduce significantly the probability of failure of the system.