ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
Te-Chuan Wang, Shih-Jen Wang, Jyh-Tong Teng
Nuclear Technology | Volume 156 | Number 2 | November 2006 | Pages 133-139
Technical Paper | Fission Reactors | doi.org/10.13182/NT06-A3779
Articles are hosted by Taylor and Francis Online.
After the Three Mile Island accident, the U.S. Nuclear Regulatory Commission requested that nuclear power plants (NPPs) in the United States provide instruments to record reactor water levels. The instruments will improve reliability in diagnosing the approach of inadequate core cooling. The reactor vessel level indicating system (RVLIS) is a measuring system for determining the water level in the reactor vessel. RVLIS was installed at Maanshan NPP under this requirement. A station blackout (SBO) incident occurred in the Maanshan NPP on March 18, 2001. The SBO incident was simulated with the MELCOR 1.8.5 code. The important parameter, reactor vessel water level, was compared with plant data. The interesting phenomena about RVLIS responses included initial full water level above 100%, reactor pressure vessel (RPV) water shrinkage, and two peaks in upper range train A. The initial full water levels of the upper range were at ~112% because of calibration conditions. The two trains of the upper range dropped at ~1.2 h after SBO because of RPV water saturation. RVLIS upper range train A had two level rises after SBO because of two flows out of the pressurizer into the loop 2 hot leg. The results indicated that MELCOR could reproduce the RVLIS response very well.