ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Ann E. Visser, Michael G. Bronikowski, Tracy S. Rudisill
Nuclear Technology | Volume 156 | Number 1 | October 2006 | Pages 87-98
Technical Paper | Reprocessing | doi.org/10.13182/NT06-A3776
Articles are hosted by Taylor and Francis Online.
The caustic precipitation of plutonium and uranium from Pu- and U-containing waste solutions has been investigated to determine whether gadolinium could be used as a neutron poison for precipitation with greater than a fissile mass containing both Pu and enriched U. Precipitation experiments were performed using both process solution samples and simulant solutions with a range of 2.6 to 5.16 g/l U and 0 to 4.3:1 U:Pu. Analyses were performed on solutions at intermediate pH to determine the partitioning of elements for accident scenarios. When both Pu and U were present in the solution, precipitation began at pH 4.5 and by pH 7, 99% of Pu and U had precipitated. When complete neutralization was achieved at pH >14 with 1.2 M excess OH-, greater than 99% of Pu, U, and Gd had precipitated. At pH >14, the particle sizes were larger, and the distribution was a single mode. The ratio of hydrogen to fissile atoms in the precipitate was determined after both settling and centrifuging and indicates that sufficient water was associated with the precipitates to provide the needed neutron moderation for Gd to prevent a criticality in solutions containing up to 4.3:1 U:Pu and up to 5.16 g/l U.