ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Geethpriya Palaniswaamy, Sudarshan K. Loyalka
Nuclear Technology | Volume 156 | Number 1 | October 2006 | Pages 29-38
Technical Paper | Reactor Safety | doi.org/10.13182/NT06-A3771
Articles are hosted by Taylor and Francis Online.
Nuclear aerosols can originate from severe core damage in light water reactors, core disruptive accidents in fast reactors, nuclear accidents during nuclear material transport, at waste disposal sites, or from explosions and can evolve under natural transport processes as well as under the influence of engineered safety features. Such aerosols can be hazardous for the equipment inside the reactor and when leaked to the environment pose potential risks to the public. However, the computation of aerosol evolution is complicated, and an exploration of the direct simulation Monte Carlo technique to elucidate the role of various physical phenomena that influence the evolution, and eventually to help develop a production computer program, has been undertaken. We have extended here the previous work in important new directions by including most coagulation mechanisms such as Brownian, gravitational, and turbulence. We have also explored the Metropolis algorithm for sampling particles. We have found that the Metropolis algorithm permits efficient simulation of a much larger number of particles because it does not require precomputation and periodic update of the collisional matrix after each collision, unlike the direct sampling method.