ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
L. Cantrel
Nuclear Technology | Volume 156 | Number 1 | October 2006 | Pages 11-28
Technical Paper | Reactor Safety | doi.org/10.13182/NT156-11
Articles are hosted by Taylor and Francis Online.
Iodine is a fission product of major importance because volatile species can be formed under severe nuclear reactor accident conditions and may potentially be released into the environment, leading to significant radiological consequences. The CAIMAN program was devoted to studying the radiochemistry of iodine in the reactor containment in the case of a severe accident occurring in a pressurized water reactor; this is a database of prime importance for the validation of codes, namely IODE, which is a module of the integral Accident Source Term Evaluation Code (ASTEC), jointly developed by the Institut de Radioprotection et de Sûreté Nucléaire and the Gesellschaft für Anlagen- und Reaktorsicherheit. These computations are generally used to predict the radiological consequences of such an accident.The experimental program, which ran from 1996 to 2002, concerned 18 experiments in a facility of intermediate scale (300 dm3), where labeled iodine, 131I, was used to perform gamma counting. The CAIMAN tests are here analyzed, and the main experimental observations and trends are described. For each experiment, IODE computations were performed and compared with experimental results in order to assess the possible weak points of the present modeling and to identify key parameters. Broadly speaking, the gaseous concentrations predicted are quite consistent with the experimental ones; the remaining gaps have been identified.