ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Jonathan Naish, Frances Fox, Zamir Ghani, Michael Loughlin, Lee Packer, Andrew Turner
Nuclear Technology | Volume 192 | Number 3 | December 2015 | Pages 299-307
Technical Paper | Accelerators | doi.org/10.13182/NT14-132
Articles are hosted by Taylor and Francis Online.
The Applied Radiation Physics Group at Culham Centre for Fusion Energy, United Kingdom, has developed and applied state-of-the-art radiation mapping methods and tools. The tools enable complex shielding calculations in and around fusion devices, both during and after plasma operations, to inform on associated radiation fields for operational, maintenance, and remote handling scenarios, for example. Here, we present a description and application of those tools to produce radiation maps to support (a) the Joint European Torus (JET) operational safety case for a new D-T campaign that is foreseen for 2020, with neutron emission rates in excess of 1018 n/s and a total neutron yield up to 1.7 × 1021 n, and (b) the ITER device.
Three tools are presented in this paper: An automated global variance reduction tool applied to the JET facility; a portable bounding surface source referred to as a mesh source, which has been applied to activated materials; and a smeared source routine, which enables the calculation of integral fields associated with moving sources. These tools are demonstrated, in combination, to produce the integrated three-dimensional dose map of an activated divertor component being transported through a path within the ITER facility.