ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Pi-En Tsai, Lawrence H. Heilbronn
Nuclear Technology | Volume 192 | Number 3 | December 2015 | Pages 222-231
Technical Paper | Radiation Transport and Protection | doi.org/10.13182/NT14-130
Articles are hosted by Taylor and Francis Online.
Stopping target measurements with energetic ion beams are important for building and validating physics models used to predict nuclear fragmentation fields created by interactions between incoming primary ions and target materials. However, the values of the ratio of primary ion range R to target depth d (R/d) are not the same in several of the existing measurements, and as such, this makes the intercomparison between those measurements complicated without corrections for differences in secondary particle transport through differing amounts of target material. Therefore, this work aims to study the influence of the target geometry on the angular distributions of secondary particles. Cases with 100 and 230 MeV/amu 4He ions bombarding stopping water and iron targets with various dimensions were studied by using the transport model code PHITS (Particle and Heavy Ion Transport code System). With increasing target depth, the impact on the attenuation of secondary particles is more significant for lighter target mass and higher-energy projectiles at forward angles. Also, with deeper targets, more interactions occur between the secondary particles and the target nuclei, which results in more targetlike fragments at large and backward angles. With respect to the cross-sectional area of the stopping targets, the forward angular distributions are similar to the system with smaller cross-sectional area of the targets; however, charged particles are significantly attenuated at large angles, whereas no general rule was found for secondary neutrons at large and backward angles. These results indicate that in order to compare the angular distributions from various stopping target measurements, it will be necessary to utilize a radiation transport code to correct the differences caused by target geometry.