ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
INL makes a case for eliminating ALARA and setting higher dose limits
A report just released by Idaho National Laboratory reviews decades of radiation protection standards and research on the health effects of low-dose radiation and recommends that the current U.S. annual occupational dose limit of 5,000 mrem be maintained without applying ALARA—the “as low as reasonably achievable” regulatory concept first introduced in 1971—below that threshold.
Noting that epidemiological studies “have consistently failed to demonstrate statistically significant health effects at doses below 10,000 mrem delivered at low dose rates,” the report also recommends “future consideration of increasing this limit to 10,000 mrem/year with appropriate cumulative-dose constraints.”
Wouter C. de Wet, Lawrence W. Townsend, X. George Xu, Whitney J. Smith
Nuclear Technology | Volume 192 | Number 3 | December 2015 | Pages 308-313
Technical Note | Radiation Biology | doi.org/10.13182/NT15-21
Articles are hosted by Taylor and Francis Online.
One of the many significant challenges mankind faces as we look to expand our footprint in outer space is the hostile space radiation environment. Not unlike many other mission parameters, the doses imparted to astronauts from extraterrestrial radiation could potentially be a limiting factor when considering the longevity of any manned mission. Thus, a detailed knowledge of dose and dose distribution with regard to the tissue-dependent International Commission on Radiological Protection limits would be beneficial to ensure crew safety.
In this work, the Standalone Package for Enhanced Estimation of Dose Distribution (SPEEDD) is developed in order to provide a method of calculating an accurate three-dimensional dose distribution for a space crew. The current version presents a prototype of the software package. The three sources considered when operating in space are solar particle events, galactic cosmic radiation, and trapped radiation belts. In this technical note, trapped radiation will not be discussed in great detail. SPEEDD combines high-fidelity human phantoms with depth-dose tables in order to rapidly calculate whole-body dose as well as individual organ doses. The anatomical phantoms used in SPEEDD are the RPI Adult Male and the RPI Adult Female. They were developed by the Rensselaer Radiation Measurement & Dosimetry Group and are cubically voxelized with a resolution of 2.7 and 2.5 mm, respectively. Generated using the High Energy Transport Code–Human Exploration and Development in Space (HETC-HEDS) Monte Carlo radiation transport code, the depth-dose tables consist of all ions from hydrogen to iron characterized at 18 energy bins ranging from 20 AMeV to 3 AGeV. SPEEDD was written in the Python™ scripting language and is designed to be easily installed or added to larger software packages.