ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Zaporizhzhia ‘extremely fragile’ relying on single off-site power line, IAEA warns
Europe’s largest nuclear power plant has just one remaining power line for essential nuclear safety and security functions, compared with its original 10 functional lines before the military conflict with Russia, warned Rafael Mariano Grossi, director general of the International Atomic Energy Agency.
Wouter C. de Wet, Lawrence W. Townsend, X. George Xu, Whitney J. Smith
Nuclear Technology | Volume 192 | Number 3 | December 2015 | Pages 308-313
Technical Note | Radiation Biology | doi.org/10.13182/NT15-21
Articles are hosted by Taylor and Francis Online.
One of the many significant challenges mankind faces as we look to expand our footprint in outer space is the hostile space radiation environment. Not unlike many other mission parameters, the doses imparted to astronauts from extraterrestrial radiation could potentially be a limiting factor when considering the longevity of any manned mission. Thus, a detailed knowledge of dose and dose distribution with regard to the tissue-dependent International Commission on Radiological Protection limits would be beneficial to ensure crew safety.
In this work, the Standalone Package for Enhanced Estimation of Dose Distribution (SPEEDD) is developed in order to provide a method of calculating an accurate three-dimensional dose distribution for a space crew. The current version presents a prototype of the software package. The three sources considered when operating in space are solar particle events, galactic cosmic radiation, and trapped radiation belts. In this technical note, trapped radiation will not be discussed in great detail. SPEEDD combines high-fidelity human phantoms with depth-dose tables in order to rapidly calculate whole-body dose as well as individual organ doses. The anatomical phantoms used in SPEEDD are the RPI Adult Male and the RPI Adult Female. They were developed by the Rensselaer Radiation Measurement & Dosimetry Group and are cubically voxelized with a resolution of 2.7 and 2.5 mm, respectively. Generated using the High Energy Transport Code–Human Exploration and Development in Space (HETC-HEDS) Monte Carlo radiation transport code, the depth-dose tables consist of all ions from hydrogen to iron characterized at 18 energy bins ranging from 20 AMeV to 3 AGeV. SPEEDD was written in the Python™ scripting language and is designed to be easily installed or added to larger software packages.