ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Thomas M. Miller, Wouter C. de Wet, Bruce W. Patton
Nuclear Technology | Volume 192 | Number 3 | December 2015 | Pages 240-249
Technical Paper | Radiation Measurements and General Instrumentation | doi.org/10.13182/NT14-153
Articles are hosted by Taylor and Francis Online.
A computational assessment of the variation in terrestrial neutron and photon background from extraterrestrial sources is presented. The motivation of this assessment is to evaluate the practicality of developing a tool or database to estimate background in real time (or near–real time) during an experimental measurement or to even predict the background for future measurements. The extraterrestrial source focused on during this assessment is naturally occurring galactic cosmic rays (GCRs). The MCNP6 transport code was used to perform the computational assessment. However, the GCR source available in MCNP6 was not used. Rather, models developed and maintained by NASA were used to generate the GCR sources. The largest variation in both neutron and photon background spectra was found to be caused by changes in elevation on Earth's surface, which can be as large as an order of magnitude. All other perturbations produced background variations on the order of a factor of 3 or less. The most interesting finding was that ∼80% and 50% of terrestrial background neutrons and photons, respectively, are generated by interactions in Earth's surface and other naturally occurring and man-made objects near a detector of particles from extraterrestrial sources and their progeny created in Earth's atmosphere. This assessment shows that it will be difficult to estimate the terrestrial background from extraterrestrial sources without a good understanding of a detector's surroundings. Therefore, estimating or predicting background during a measurement environment like a mobile random search will be difficult.