ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Jian-Yu Zhu, Hao-Wei Dai, Wen-Xiong Xie
Nuclear Technology | Volume 192 | Number 2 | November 2015 | Pages 172-180
Technical Paper | Radiation Measurements and General Instrumentation | doi.org/10.13182/NT14-115
Articles are hosted by Taylor and Francis Online.
Algorithms for locating the neutron source by neutron time-of-flight (TOF) measurement are established and discussed for monoenergetic and multienergetic neutrons in this paper. For the monoenergetic neutron source, the location of the source could be estimated by locating the position where the variance between the actual TOF and the calculation gains its minimum. For multienergetic neutrons the maximum likelihood (ML) method has been applied to process the time-correlation measurement. The efficiencies of location estimations are studies with simulations. In the simulations, the TOFs are acquired by time-correlation measurement of three neutron detectors surrounding the suspected area of the neutron source. The results indicate that the location of monoenergetic neutron sources could be estimated by the neutron TOF acquired by three detectors, while for multienergetic neutron sources, the likelihood method could be used to locate the most probable location, as well as its possible distribution of location. As the result of large-scale simulation and comparison, the ML estimation method is more effective than traditional methods, especially in conditions of low count rates or low resolution.