ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Cheol Ho Pyeon, Hiroyuki Nakano, Masao Yamanaka, Takahiro Yagi, Tsuyoshi Misawa
Nuclear Technology | Volume 192 | Number 2 | November 2015 | Pages 181-190
Technical Paper | Accelerators | doi.org/10.13182/NT14-111
Articles are hosted by Taylor and Francis Online.
At the Kyoto University Critical Assembly, a series of reactor physics experiments on the accelerator-driven system (ADS) coupled with the fixed-field alternating gradient (FFAG) accelerator are carried out, and the spallation neutrons generated by 100-MeV protons from the FFAG accelerator are successfully injected into the cores. In the ADS experiments, the neutron characteristics of the solid target are investigated through static and kinetic analyses, when the external neutron source of the neutron spectrum (the W, W-Be, or Pb-Bi target) is varied. The results demonstrate that the neutron yield is large with the W target, but a discrepancy is observed between the experiments and the calculations, because the experimental uncertainty of proton monitoring is attributable to defocusing of proton beams. With the use of reaction rate distribution in the core region, the static parameters are estimated fairly well in the analyses of the neutron multiplication and subcritical multiplication factor. In the kinetic experiments, the variation of the solid target used is clearly evident in the prompt neutron decay constant and the subcriticality.