ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Kyoung-Ho Kang, Rae-Joon Park, Sang-Baik Kim, Hee-Dong Kim, Soon-Heung Chang
Nuclear Technology | Volume 155 | Number 3 | September 2006 | Pages 324-339
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT06-A3765
Articles are hosted by Taylor and Francis Online.
External reactor vessel cooling (ERVC) is one of the major severe accident management strategies for operating nuclear power plants. Flow circulation inside the reactor pressure vessel (RPV) insulator should be effective enough to ensure sufficient heat removal via ERVC. Confirmation experiments for different configurations of the RPV insulator were performed using alumina-iron thermite melt as a corium simulant. For precise evaluations on the flow path inside the insulator, flow analyses using the RELAP5/MOD3 code were performed. Because of the limited steam venting through the insulator, steam binding occurred inside the annulus in the tests that were performed to simulate the operating conventional insulator design. This steam binding brought about incident heatup of the vessel outer surface. On the contrary, in the test that was performed to simulate the advanced design of insulator considering ERVC, sufficient water ingression and steam venting through the insulator resulted in effective cooldown of the vessel lower head characterized by nucleate boiling. The results of flow analyses using the RELAP5/MOD3 code confirmed the steam binding in case of the limited steam venting. From the current experimental results, it could be found that the proposed modification of the insulator design allowing sufficient water ingression and steam ventilation could increase the possibility of in-vessel corium retention through ERVC.