ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Kyoung-Ho Kang, Rae-Joon Park, Sang-Baik Kim, Hee-Dong Kim, Soon-Heung Chang
Nuclear Technology | Volume 155 | Number 3 | September 2006 | Pages 324-339
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT06-A3765
Articles are hosted by Taylor and Francis Online.
External reactor vessel cooling (ERVC) is one of the major severe accident management strategies for operating nuclear power plants. Flow circulation inside the reactor pressure vessel (RPV) insulator should be effective enough to ensure sufficient heat removal via ERVC. Confirmation experiments for different configurations of the RPV insulator were performed using alumina-iron thermite melt as a corium simulant. For precise evaluations on the flow path inside the insulator, flow analyses using the RELAP5/MOD3 code were performed. Because of the limited steam venting through the insulator, steam binding occurred inside the annulus in the tests that were performed to simulate the operating conventional insulator design. This steam binding brought about incident heatup of the vessel outer surface. On the contrary, in the test that was performed to simulate the advanced design of insulator considering ERVC, sufficient water ingression and steam venting through the insulator resulted in effective cooldown of the vessel lower head characterized by nucleate boiling. The results of flow analyses using the RELAP5/MOD3 code confirmed the steam binding in case of the limited steam venting. From the current experimental results, it could be found that the proposed modification of the insulator design allowing sufficient water ingression and steam ventilation could increase the possibility of in-vessel corium retention through ERVC.