ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Applications open for the fall cohort of Mentor Match
Applications are officially open for the second cohort of the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the fall cohort, which will take place October 1–November 30, is September 17. The application form can be found here.
Kyoung-Ho Kang, Rae-Joon Park, Sang-Baik Kim, Hee-Dong Kim, Soon-Heung Chang
Nuclear Technology | Volume 155 | Number 3 | September 2006 | Pages 324-339
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT06-A3765
Articles are hosted by Taylor and Francis Online.
External reactor vessel cooling (ERVC) is one of the major severe accident management strategies for operating nuclear power plants. Flow circulation inside the reactor pressure vessel (RPV) insulator should be effective enough to ensure sufficient heat removal via ERVC. Confirmation experiments for different configurations of the RPV insulator were performed using alumina-iron thermite melt as a corium simulant. For precise evaluations on the flow path inside the insulator, flow analyses using the RELAP5/MOD3 code were performed. Because of the limited steam venting through the insulator, steam binding occurred inside the annulus in the tests that were performed to simulate the operating conventional insulator design. This steam binding brought about incident heatup of the vessel outer surface. On the contrary, in the test that was performed to simulate the advanced design of insulator considering ERVC, sufficient water ingression and steam venting through the insulator resulted in effective cooldown of the vessel lower head characterized by nucleate boiling. The results of flow analyses using the RELAP5/MOD3 code confirmed the steam binding in case of the limited steam venting. From the current experimental results, it could be found that the proposed modification of the insulator design allowing sufficient water ingression and steam ventilation could increase the possibility of in-vessel corium retention through ERVC.