ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Avinash Sahu, Tessy Vincent
Nuclear Technology | Volume 192 | Number 2 | November 2015 | Pages 160-164
Technical Paper | Reprocessing | doi.org/10.13182/NT15-9
Articles are hosted by Taylor and Francis Online.
A nonelectrolytic method for uranous preparation, deploying catalytic reduction with hydrogen and leading to highly improved kinetics and near total conversion of uranyl nitrate to uranous nitrate, has been developed. Detailed experimental studies up to 5-ℓ scale, involving selection of stable supports for the platinum-based catalyst, optimized process parameters with regard to catalyst-to-uranium (C/U) ratio, acidity, hydrazine concentration, temperature, and pressures, have led to a deployable flow sheet, for near total conversion of uranyl nitrate to uranous nitrate.
Based on the studies at various stages, a facility for making 70 ℓ of uranous per batch in 0.5-h duration has been installed, and the process has been demonstrated on a pilot scale. Active runs have been taken, with various C/U ratios, namely, 1:200, 1:250, 1:300, and 1:350, in a gas induction reactor with uranyl nitrate solution generated from the reprocessing plant.