ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Zaporizhzhia ‘extremely fragile’ relying on single off-site power line, IAEA warns
Europe’s largest nuclear power plant has just one remaining power line for essential nuclear safety and security functions, compared with its original 10 functional lines before the military conflict with Russia, warned Rafael Mariano Grossi, director general of the International Atomic Energy Agency.
Avinash Sahu, Tessy Vincent
Nuclear Technology | Volume 192 | Number 2 | November 2015 | Pages 160-164
Technical Paper | Reprocessing | doi.org/10.13182/NT15-9
Articles are hosted by Taylor and Francis Online.
A nonelectrolytic method for uranous preparation, deploying catalytic reduction with hydrogen and leading to highly improved kinetics and near total conversion of uranyl nitrate to uranous nitrate, has been developed. Detailed experimental studies up to 5-ℓ scale, involving selection of stable supports for the platinum-based catalyst, optimized process parameters with regard to catalyst-to-uranium (C/U) ratio, acidity, hydrazine concentration, temperature, and pressures, have led to a deployable flow sheet, for near total conversion of uranyl nitrate to uranous nitrate.
Based on the studies at various stages, a facility for making 70 ℓ of uranous per batch in 0.5-h duration has been installed, and the process has been demonstrated on a pilot scale. Active runs have been taken, with various C/U ratios, namely, 1:200, 1:250, 1:300, and 1:350, in a gas induction reactor with uranyl nitrate solution generated from the reprocessing plant.