ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Zaporizhzhia ‘extremely fragile’ relying on single off-site power line, IAEA warns
Europe’s largest nuclear power plant has just one remaining power line for essential nuclear safety and security functions, compared with its original 10 functional lines before the military conflict with Russia, warned Rafael Mariano Grossi, director general of the International Atomic Energy Agency.
M. Gonzalez, L. Hansen, D. Rappleye, R. Cumberland, M. F. Simpson
Nuclear Technology | Volume 192 | Number 2 | November 2015 | Pages 165-171
Technical Paper | Reprocessing | doi.org/10.13182/NT15-28
Articles are hosted by Taylor and Francis Online.
It has previously been proposed by safeguards experts that curium will track plutonium through a spent fuel pyroprocessing facility, enabling nondestructive assaying of plutonium via counting neutron emissions from 244Cm. This is a critical assumption for the neutron balance approach to safeguards. If Cm and Pu were to behave chemically the same, counting neutrons could be used to estimate Pu concentrations. In this study, plutonium tracking with curium has been investigated using Enhanced REFIN with Anodic Dissolution (ERAD), a one-dimensional transient electrorefiner model based on fundamental electrochemical equations. The model was used to simulate simultaneous deposition of uranium, plutonium, and curium onto a solid metal cathode. Chemical/physical properties used by the model were either obtained from the literature or assumed. The standard exchange current density of curium was estimated by analyzing published cyclic voltammetry data for LiCl-KCl-CmCl3. The focus of the ERAD calculations was on verifying that Pu and Cm could codeposit onto the cathode along with U and to determine if the Pu/Cm ratio would be the same between the salt pool and cathode deposit. It was determined that Cm largely resists cathode deposition, while Pu can be driven to codeposit at sufficiently high current densities. The expected concentration of Cm in the salt would not support any deposition of Cm onto the cathode. It would need to be raised to ~1 wt% before small gram quantities of Cm will deposit onto the cathode. Even then, the Pu/Cm ratio of the cathode was found to be three orders of magnitude higher than the ratio in the salt. It is, thus, concluded that the neutron balance approach would be ineffective at safeguarding a nuclear fuel pyroprocessing facility.