ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
M. Gonzalez, L. Hansen, D. Rappleye, R. Cumberland, M. F. Simpson
Nuclear Technology | Volume 192 | Number 2 | November 2015 | Pages 165-171
Technical Paper | Reprocessing | doi.org/10.13182/NT15-28
Articles are hosted by Taylor and Francis Online.
It has previously been proposed by safeguards experts that curium will track plutonium through a spent fuel pyroprocessing facility, enabling nondestructive assaying of plutonium via counting neutron emissions from 244Cm. This is a critical assumption for the neutron balance approach to safeguards. If Cm and Pu were to behave chemically the same, counting neutrons could be used to estimate Pu concentrations. In this study, plutonium tracking with curium has been investigated using Enhanced REFIN with Anodic Dissolution (ERAD), a one-dimensional transient electrorefiner model based on fundamental electrochemical equations. The model was used to simulate simultaneous deposition of uranium, plutonium, and curium onto a solid metal cathode. Chemical/physical properties used by the model were either obtained from the literature or assumed. The standard exchange current density of curium was estimated by analyzing published cyclic voltammetry data for LiCl-KCl-CmCl3. The focus of the ERAD calculations was on verifying that Pu and Cm could codeposit onto the cathode along with U and to determine if the Pu/Cm ratio would be the same between the salt pool and cathode deposit. It was determined that Cm largely resists cathode deposition, while Pu can be driven to codeposit at sufficiently high current densities. The expected concentration of Cm in the salt would not support any deposition of Cm onto the cathode. It would need to be raised to ~1 wt% before small gram quantities of Cm will deposit onto the cathode. Even then, the Pu/Cm ratio of the cathode was found to be three orders of magnitude higher than the ratio in the salt. It is, thus, concluded that the neutron balance approach would be ineffective at safeguarding a nuclear fuel pyroprocessing facility.