ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
H. J. Connors
Nuclear Technology | Volume 55 | Number 2 | November 1981 | Pages 311-331
Technical Paper | Materials | doi.org/10.13182/NT55-311
Articles are hosted by Taylor and Francis Online.
Potential tube fretting wear and fretting fatigue caused by flow-induced vibration are addressed in the design of nuclear steam generators. Flow-induced interactions of the tubes with the tube supports can cause localized tube wear and fretting fatigue effects if the system is not properly designed. The major flow-induced vibration mechanisms that can cause vibration of steam generator tubes are fluidelastic excitation, turbulence, and vortex shedding. Fluid-elastic excitation, rather than vortex shedding, is believed to have been the cause of large-amplitude vibration and rapid wear of heat exchanger tubes in the past. Fluidelastic vibration initiates when the flow velocity exceeds a critical value. For subcritical flow velocities, turbulence is the main excitation mechanism to consider in predicting the long-term wear of steam generator tubes. The various types of wear-producing forces and motions that can be generated between tubes and supports by flow-induced vibration have been identified, and some general procedures have been developed for predicting tube wear.