ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
H. J. Connors
Nuclear Technology | Volume 55 | Number 2 | November 1981 | Pages 311-331
Technical Paper | Materials | doi.org/10.13182/NT55-311
Articles are hosted by Taylor and Francis Online.
Potential tube fretting wear and fretting fatigue caused by flow-induced vibration are addressed in the design of nuclear steam generators. Flow-induced interactions of the tubes with the tube supports can cause localized tube wear and fretting fatigue effects if the system is not properly designed. The major flow-induced vibration mechanisms that can cause vibration of steam generator tubes are fluidelastic excitation, turbulence, and vortex shedding. Fluid-elastic excitation, rather than vortex shedding, is believed to have been the cause of large-amplitude vibration and rapid wear of heat exchanger tubes in the past. Fluidelastic vibration initiates when the flow velocity exceeds a critical value. For subcritical flow velocities, turbulence is the main excitation mechanism to consider in predicting the long-term wear of steam generator tubes. The various types of wear-producing forces and motions that can be generated between tubes and supports by flow-induced vibration have been identified, and some general procedures have been developed for predicting tube wear.