ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Bahman Zohuri, Patrick J. McDaniel, Cassiano R. R. De Oliveira
Nuclear Technology | Volume 192 | Number 1 | October 2015 | Pages 48-60
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT14-42
Articles are hosted by Taylor and Francis Online.
Nuclear heated open air-Brayton cycles have been investigated both as topping cycles for combined cycle Brayton-Rankine cycles and as standalone recuperated Brayton cycles. The peak turbine inlet temperature chosen for the analysis was 933 K for a range of Generation IV molten salt reactors or lead cooled reactors. A baseline power level of 25 MW(electric) was chosen to be representative of some of the small modular reactor concepts being considered. Extensions to higher temperatures and power levels were evaluated. Thermal efficiencies in the 45% to 46% range can be achieved by both the combined cycle systems and the recuperated systems, though the combined cycle systems achieve about a 1% to 1.5% improvement over the recuperated systems.
The nuclear heated open air-Brayton systems have several advantages over current light water reactor and other Generation IV systems. The analysis demonstrates that the cycle thermal efficiencies are higher than other proposed systems. The gas turbine hardware is readily available over a broad range of power levels. And both the combined cycle and recuperated systems require significantly less circulating water for waste heat rejection than any other proposed systems.