ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Bahman Zohuri, Patrick J. McDaniel, Cassiano R. R. De Oliveira
Nuclear Technology | Volume 192 | Number 1 | October 2015 | Pages 48-60
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT14-42
Articles are hosted by Taylor and Francis Online.
Nuclear heated open air-Brayton cycles have been investigated both as topping cycles for combined cycle Brayton-Rankine cycles and as standalone recuperated Brayton cycles. The peak turbine inlet temperature chosen for the analysis was 933 K for a range of Generation IV molten salt reactors or lead cooled reactors. A baseline power level of 25 MW(electric) was chosen to be representative of some of the small modular reactor concepts being considered. Extensions to higher temperatures and power levels were evaluated. Thermal efficiencies in the 45% to 46% range can be achieved by both the combined cycle systems and the recuperated systems, though the combined cycle systems achieve about a 1% to 1.5% improvement over the recuperated systems.
The nuclear heated open air-Brayton systems have several advantages over current light water reactor and other Generation IV systems. The analysis demonstrates that the cycle thermal efficiencies are higher than other proposed systems. The gas turbine hardware is readily available over a broad range of power levels. And both the combined cycle and recuperated systems require significantly less circulating water for waste heat rejection than any other proposed systems.