ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
S. Chatzidakis, P. T. Forsberg, L. H. Tsoukalas
Nuclear Technology | Volume 192 | Number 1 | October 2015 | Pages 61-73
Technical Paper | Radiation Transport and Protection | doi.org/10.13182/NT14-112
Articles are hosted by Taylor and Francis Online.
Governments are interested in radiation signal encryption in projects relating to international safeguards; however, the available algorithms do not suitably address the challenges presented by the increasing computational capability of various actors, which require recent encryption algorithms to be more robust against attack algorithms. Therefore, an algorithmic approach for performing radiation signal encryption employing the nonlinear capabilities of artificial neural networks with the noise-like properties of chaotic systems is proposed herein. The radiation signal digital envelope consists of the encrypted signal such as may be found through gamma spectroscopy, the secret key for the encryption, and the associated hash value. The presented algorithmic approach demonstrates, in an orderly manner, an integrated method for computing this radiation signal digital envelope. Indispensable constituents of encryption include both the construction of a time series with chaotic characteristics and the incorporation of a hash function generator to satisfy the security requirements of confidentiality, authentication, and nonrepudiation. The methodology is demonstrated via the encryption and subsequent decryption of two frequently occurring radiation signals, namely, gamma spectroscopy signals from 60Co and 137Cs. The results obtained demonstrate the capability of the algorithmic approach to integrate artificial neural networks and chaos dynamics to produce the radiation signal digital envelope (for given security requirements).