ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
S. Chatzidakis, P. T. Forsberg, L. H. Tsoukalas
Nuclear Technology | Volume 192 | Number 1 | October 2015 | Pages 61-73
Technical Paper | Radiation Transport and Protection | doi.org/10.13182/NT14-112
Articles are hosted by Taylor and Francis Online.
Governments are interested in radiation signal encryption in projects relating to international safeguards; however, the available algorithms do not suitably address the challenges presented by the increasing computational capability of various actors, which require recent encryption algorithms to be more robust against attack algorithms. Therefore, an algorithmic approach for performing radiation signal encryption employing the nonlinear capabilities of artificial neural networks with the noise-like properties of chaotic systems is proposed herein. The radiation signal digital envelope consists of the encrypted signal such as may be found through gamma spectroscopy, the secret key for the encryption, and the associated hash value. The presented algorithmic approach demonstrates, in an orderly manner, an integrated method for computing this radiation signal digital envelope. Indispensable constituents of encryption include both the construction of a time series with chaotic characteristics and the incorporation of a hash function generator to satisfy the security requirements of confidentiality, authentication, and nonrepudiation. The methodology is demonstrated via the encryption and subsequent decryption of two frequently occurring radiation signals, namely, gamma spectroscopy signals from 60Co and 137Cs. The results obtained demonstrate the capability of the algorithmic approach to integrate artificial neural networks and chaos dynamics to produce the radiation signal digital envelope (for given security requirements).