ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
S. Chatzidakis, P. T. Forsberg, L. H. Tsoukalas
Nuclear Technology | Volume 192 | Number 1 | October 2015 | Pages 61-73
Technical Paper | Radiation Transport and Protection | doi.org/10.13182/NT14-112
Articles are hosted by Taylor and Francis Online.
Governments are interested in radiation signal encryption in projects relating to international safeguards; however, the available algorithms do not suitably address the challenges presented by the increasing computational capability of various actors, which require recent encryption algorithms to be more robust against attack algorithms. Therefore, an algorithmic approach for performing radiation signal encryption employing the nonlinear capabilities of artificial neural networks with the noise-like properties of chaotic systems is proposed herein. The radiation signal digital envelope consists of the encrypted signal such as may be found through gamma spectroscopy, the secret key for the encryption, and the associated hash value. The presented algorithmic approach demonstrates, in an orderly manner, an integrated method for computing this radiation signal digital envelope. Indispensable constituents of encryption include both the construction of a time series with chaotic characteristics and the incorporation of a hash function generator to satisfy the security requirements of confidentiality, authentication, and nonrepudiation. The methodology is demonstrated via the encryption and subsequent decryption of two frequently occurring radiation signals, namely, gamma spectroscopy signals from 60Co and 137Cs. The results obtained demonstrate the capability of the algorithmic approach to integrate artificial neural networks and chaos dynamics to produce the radiation signal digital envelope (for given security requirements).