ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
M. Gentili, B. Fontaine, G. Rimpault
Nuclear Technology | Volume 192 | Number 1 | October 2015 | Pages 11-24
Technical Paper | Fission Reactors | doi.org/10.13182/NT14-123
Articles are hosted by Taylor and Francis Online.
Fast reactor designs are currently being revisited aiming at having a consolidated safety dossier. In that frame, studying any perturbation of nominal operating condition is mandatory.
Among different initiators, particular attention is being paid to reactivity insertion due to core assembly bowing and deformation and induced lattice readjustments as a consequence of events such as earthquakes.
In this study, a deterministic calculation scheme based on the mesh projection method has been used in order to evaluate the reactivity changes occurring in a deformed sodium fast reactor core.
With the microscopic cross sections calculated by ECCO, full three-dimensional core calculations are being conducted with ERANOS (DIF3D), VARIANT, and SNATCH to solve neutron transport equations in either diffusion, nodal variational, or Sn transport approximations.
A simple analytical model based on perturbation theory has been developed to identify the main phenomena leading to changes in the core reactivity. Reactivity changes induced by small deformations can be estimated as a summation of reactivity perturbations of individual subassemblies.
The results obtained with this method have been checked by comparing them to those obtained with Monte Carlo simulations. A good agreement is being found allowing the use of this method in realistic problems with significant computer resource reduction.
The different contributions to the reactivity changes confirm the results of the analytical model.