ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
M. Gentili, B. Fontaine, G. Rimpault
Nuclear Technology | Volume 192 | Number 1 | October 2015 | Pages 11-24
Technical Paper | Fission Reactors | doi.org/10.13182/NT14-123
Articles are hosted by Taylor and Francis Online.
Fast reactor designs are currently being revisited aiming at having a consolidated safety dossier. In that frame, studying any perturbation of nominal operating condition is mandatory.
Among different initiators, particular attention is being paid to reactivity insertion due to core assembly bowing and deformation and induced lattice readjustments as a consequence of events such as earthquakes.
In this study, a deterministic calculation scheme based on the mesh projection method has been used in order to evaluate the reactivity changes occurring in a deformed sodium fast reactor core.
With the microscopic cross sections calculated by ECCO, full three-dimensional core calculations are being conducted with ERANOS (DIF3D), VARIANT, and SNATCH to solve neutron transport equations in either diffusion, nodal variational, or Sn transport approximations.
A simple analytical model based on perturbation theory has been developed to identify the main phenomena leading to changes in the core reactivity. Reactivity changes induced by small deformations can be estimated as a summation of reactivity perturbations of individual subassemblies.
The results obtained with this method have been checked by comparing them to those obtained with Monte Carlo simulations. A good agreement is being found allowing the use of this method in realistic problems with significant computer resource reduction.
The different contributions to the reactivity changes confirm the results of the analytical model.