ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Wei-Nian Su, Shih-Jen Wang, I-Ming Huang, Show-Chyuan Chiang
Nuclear Technology | Volume 155 | Number 3 | September 2006 | Pages 253-264
Technical Paper | Fission Reactors | doi.org/10.13182/NT06-A3760
Articles are hosted by Taylor and Francis Online.
Containment flooding is an important strategy for severe accident management of a conventional boiling water reactor (BWR) system. The execution of containment flooding requires information about the water level in the primary containment. However, there is no instrument to measure the drywell water level for most Mark-III systems. Furthermore, because of the design feature of the Mark-III containment, the water level in the containment does not necessarily guarantee that there is an equivalent water level in the drywell. Therefore, the development of a drywell water level computational aid becomes very useful. The purpose of this work is to develop and validate the drywell water level computational aid and to investigate the implementation of the proposed computational aid on the containment flooding strategy of a Mark-III system. The Kuosheng nuclear power plant (NPP) is a typical BWR-6 NPP with Mark-III containment, and the Severe Accident Management Guideline (SAMG) of the Kuosheng NPP has been developed based on the BWR Owners' Group Emergency Procedure Guidelines and Severe Accident Guidelines, Revision 2. Therefore, the Kuosheng NPP is selected as the plant for study, and the MAAP4 code is chosen as the tool for analysis.