ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
A. Bousbia Salah, J. Vlassenbroeck, H. Austregesilo
Nuclear Technology | Volume 192 | Number 1 | October 2015 | Pages 1-10
Technical Paper | Fission Reactors | doi.org/10.13182/NT14-51
Articles are hosted by Taylor and Francis Online.
Following an accidental event in a nuclear pressurized water reactor, involving the loss of primary-side forced coolant flow, the core decay heat is generally removed through a natural circulation convection process. The cooldown of the reactor coolant system is carried out through the secondary-side heat sink following prescribed guidelines. However, under asymmetric primary-side cooling conditions, natural circulation interruption (NCI) in the loops with an inactive steam generator may take place. Under such conditions, the cooldown of the primary side may be hindered and the transient may evolve toward a degraded state. The NCI issue was recently addressed within the thermal-hydraulic experimental projects ROSA-2 and PKL-2 of the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development. The objective was to identify the conditions that may lead to the occurrence of NCI, to develop cooldown procedures that prevent the occurrence of NCI, and to assess the thermal-hydraulic code capabilities in predicting this phenomenon. In the current study, NCI experimental tests carried out in the LSTF (Large Scale Test Facility) and PKL (Primaer-KreisLauf) facilities are assessed using the best-estimate thermal-hydraulic system codes CATHARE and ATHLET. The simulation results are presented and conclusions are derived accordingly.