ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Neng-Chuan Tien, Shih-Hai Li
Nuclear Technology | Volume 155 | Number 2 | August 2006 | Pages 208-225
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT06-A3757
Articles are hosted by Taylor and Francis Online.
A numerical model was developed to analyze radioniclide transport within saturated fractured rock that accounts for the effect of nonlinear kinetic sorption of radionuclides on groundwater colloids. The interactions between radionuclides and colloids are assumed to be nonlinear and kinetic, while sorption of radionuclides on fracture surfaces and in rock matrix is described by a sorption distribution coefficient. Colloids may move with a velocity that is higher than the mean groundwater velocity. However, as there are insufficient data with which to assign a priori colloid velocity, we use a theoretical model based on hydrodynamic chromatography to evaluate the colloid velocity within a single fracture.Calculation results show that external surface forces acting on colloids could alter both the mobility of colloids and the host population of radionuclides in groundwater. The results also indicate that colloid-facilitated transport occurs depending on colloid concentration. Moreover, a simple two-member radionuclide decay chain is assumed and incorporated into the kinetic model.