ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Neng-Chuan Tien, Shih-Hai Li
Nuclear Technology | Volume 155 | Number 2 | August 2006 | Pages 208-225
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT06-A3757
Articles are hosted by Taylor and Francis Online.
A numerical model was developed to analyze radioniclide transport within saturated fractured rock that accounts for the effect of nonlinear kinetic sorption of radionuclides on groundwater colloids. The interactions between radionuclides and colloids are assumed to be nonlinear and kinetic, while sorption of radionuclides on fracture surfaces and in rock matrix is described by a sorption distribution coefficient. Colloids may move with a velocity that is higher than the mean groundwater velocity. However, as there are insufficient data with which to assign a priori colloid velocity, we use a theoretical model based on hydrodynamic chromatography to evaluate the colloid velocity within a single fracture.Calculation results show that external surface forces acting on colloids could alter both the mobility of colloids and the host population of radionuclides in groundwater. The results also indicate that colloid-facilitated transport occurs depending on colloid concentration. Moreover, a simple two-member radionuclide decay chain is assumed and incorporated into the kinetic model.