ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Neng-Chuan Tien, Shih-Hai Li
Nuclear Technology | Volume 155 | Number 2 | August 2006 | Pages 208-225
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT06-A3757
Articles are hosted by Taylor and Francis Online.
A numerical model was developed to analyze radioniclide transport within saturated fractured rock that accounts for the effect of nonlinear kinetic sorption of radionuclides on groundwater colloids. The interactions between radionuclides and colloids are assumed to be nonlinear and kinetic, while sorption of radionuclides on fracture surfaces and in rock matrix is described by a sorption distribution coefficient. Colloids may move with a velocity that is higher than the mean groundwater velocity. However, as there are insufficient data with which to assign a priori colloid velocity, we use a theoretical model based on hydrodynamic chromatography to evaluate the colloid velocity within a single fracture.Calculation results show that external surface forces acting on colloids could alter both the mobility of colloids and the host population of radionuclides in groundwater. The results also indicate that colloid-facilitated transport occurs depending on colloid concentration. Moreover, a simple two-member radionuclide decay chain is assumed and incorporated into the kinetic model.